Patient setup error measurement using 3D intensity-based image registration techniques.

نویسندگان

  • Sébastien Clippe
  • David Sarrut
  • Claude Malet
  • Serge Miguet
  • Chantal Ginestet
  • Christian Carrie
چکیده

PURPOSE Conformal radiotherapy requires accurate patient positioning with reference to the initial three-dimensional (3D) CT image. Patient setup is controlled by comparison with portal images acquired immediately before patient treatment. Several automatic methods have been proposed, generally based on segmentation procedures. However, portal images are of very low contrast, leading to segmentation inaccuracies. In this study, we propose an intensity-based (with no segmentation), fully automatic, 3D method, associating two portal images and a 3D CT scan to estimate patient setup. MATERIALS AND METHODS Images of an anthropomorphic phantom were used. A CT scan of the pelvic area was first acquired, then the phantom was installed in seven positions. The process is a 3D optimization of a similarity measure in the space of rigid transformations. To avoid time-consuming digitally reconstructed radiograph generation at each iteration, we used two-dimensional transformations and two sets of specific and pregenerated digitally reconstructed radiographs. We also propose a technique for computing intensity-based similarity measures between several couples of images. A correlation coefficient, chi-square, mutual information, and correlation ratio were used. RESULTS The best results were obtained with the correlation ratio. The median root mean square error was 2.0 mm for the seven positions tested and was, respectively, 3.6, 4.4, and 5.1 for correlation coefficient, chi-square, and mutual information. CONCLUSIONS Full 3D analysis of setup errors is feasible without any segmentation step. It is fast and accurate and could therefore be used before each treatment session. The method presents three main advantages for clinical implementation-it is fully automatic, applicable to all tumor sites, and requires no additional device.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of Inter- and Intra-Fraction Motion Errors at External Radiotherapy Using a Markerless Strategy Based on Image Registration Combined with Correlation Model

Introduction: A new method based on image registration technique and an intelligent correlation model to calculate. The present study aimed to propose inter- and intra-fraction motion errors in order to address the limitations of conventional Patient positioning methods. Material and Methods: The configuration of the markerless method wa...

متن کامل

A neural network‐based 2D/3D image registration quality evaluator for pediatric patient setup in external beam radiotherapy

Our purpose was to develop a neural network-based registration quality evaluator (RQE) that can improve the 2D/3D image registration robustness for pediatric patient setup in external beam radiotherapy. Orthogonal daily setup X-ray images of six pediatric patients with brain tumors receiving proton therapy treatments were retrospectively registered with their treatment planning computed tomogra...

متن کامل

WE-E-213CD-10: A Robust 2D/3D Image Registration System for Pediatric Patient Setup in External Beam Radiotherapy.

PURPOSE To develop a neural network based registration quality evaluator (RQE) that can improve the 2D/3D image registration robustness for pediatric patient setup in external beam radiotherapy. METHODS X-ray setup images of six pediatric patients with brain tumors received proton therapies were retrospectively registered with their treatment planning computed tomography (CT) images. A neural...

متن کامل

2D-3D registration for cranial radiation therapy using a 3D kV CBCT and a single limited field-of-view 2D kV radiograph.

PURPOSE We present and evaluate a fully automated 2D-3D intensity-based registration framework using a single limited field-of-view (FOV) 2D kV radiograph and a 3D kV CBCT for 3D estimation of patient setup errors during brain radiotherapy. METHODS We evaluated two similarity measures, the Pearson correlation coefficient on image intensity values (ICC) and maximum likelihood measure with Gaus...

متن کامل

Automatic localization of target vertebrae in spine surgery using fast CT-to-fluoroscopy (3D-2D) image registration

Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on “level counting” – i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e.g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of verteb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of radiation oncology, biology, physics

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2003